
1

Fuzzing Soft IPs for Fun & Profit

Fuzzing Soft IPs for Fun & Profit
Raghudeep Kannavara, Meta Platforms

Steven Larson, Intel Corp

1 Introduction
The growing complexity of systems coupled with the advent of
increasingly sophisticated security attacks highlights a dire need
for advanced automated vulnerability analysis tools. Fuzzing is
an effective proven technique to find security critical issues in
systems, often without needing to fully understand the internals
of the system under test. The main purpose of fuzzing is not to
test the correct functionality, but to explore and test that
undefined area. Fuzzing is a form of negative testing in which
an interface is tested with a large quantity of randomized, invalid
input, with the goal of triggering a failure. While fuzzing has been
widely adopted in software testing, fuzzing tools and techniques
to find security bugs in hardware are fast gaining traction in both
academia and industry [1][2][3][7].

In electronic design, a semiconductor intellectual property (IP)
core is a reusable unit of logic, cell, or integrated circuit layout
design. Soft IPs (SIP) are IP cores generally offered as
synthesizable RTL modules. These are developed in Hardware
description language like Verilog. A SIP implements a specific
logic that is concise enough to be tested using fuzzing
techniques while not running into scalability issues often
encountered while testing an SoC. Hence, we focus on SIP
interface fuzzing to constrain our Design Under Test (DUT) to a
specific logic implementation.

Fuzzing stimuli to SIP Verilog modules in a simulation
environment is challenging largely because simulation is slow.
Even if test cases are generated in parallel, simulation needs to
happen in parallel to avoid a bottleneck, along with enabling
coherency between different stimulus generators and
simulations to avoid repetition of testcases. This is not easily
scalable. On the other hand, FPGA models are very useful in
enabling faster verification but require efforts to set up emulation
or FPGA prototype. Converting C++ or SystemC to Verilog has
been well researched with many commercial and opensource
tools. At the same time, compiling Verilog into C++ executables
or SystemC models is fast gaining traction with tools such as
Verilator [4] in the forefront. While this opens exciting new
opportunities to harness state of the art coverage driven
scalable fuzzers such as AFL++ [5] to test Verilog modules by
converting them to C++ binaries, it also comes with the perils of
treading uncharted territory. While the technique of applying
software fuzzers to verilated hardware modules has been
proposed earlier [1][2][3][7], we believe there are fundamental
questions that are yet to be answered and solutions to success
that are not discussed in previous literature. Previous works
have primarily focused on coverage metrics and not on
identifying specific CWEs.

With this in view, to complement existing verification methods,
in this paper we present a newer approach to fuzzing SIP
modules, i.e., using AFL++ to fuzz interfaces of “verilated” SIPs.
In the next section, we describe the proposed methodology and
tooling required to enable SIP fuzzing. We follow that up with a
discussion on the challenges we encountered, recommend

solutions, and demonstrate this approach on selected hardware
Common Weakness Enumerations (CWE), both of which are
novel contributions of our work. Finally, we summarize the paper
with conclusions and future plans.

2 Methodology & Tooling
Identify/Isolate the logic & interface to fuzz: This initial step
is critical to a successful fuzzing outcome. As with any
verification methodology, we need to clearly identify the
boundaries of the logic we intend to test. Although the SIP
interface at the top-level module is an excellent fuzzing target, it
may require modelling behavior of other logic that interacts with
the SIP. In many instances, these interactions may already be
defined previously to support SIP verification, e.g., Bus
Functional Models (BFM). Additionally, debugging the internals
of complex IPs can become problematic to identify failure
scenarios. On the other hand, we can drill further down in the
SIP logic to isolate sections of code that implement a security
critical functionality, e.g., SAI based access controls, PCIE
packet parsing, address decoding, opcode handling etcetera
and focus on fuzzing the interfaces of such logic in isolation.

Write a C++ test harness: Next, we write a C++ test harness,
which defines the standard main() that instantiates the cycle-
accurate behavioral model as a C++ object. The C++ object in
this case is the verilated SIP DUT. This test harness must read
stimulus from a file and input it to the DUT. The goal is to
malform this input file using fuzzers such as AFL++ and use it to
drive DUT stimuli. To limit the interfaces to fuzz, we can hold
input signals that do not influence DUT behavior as constant
while feeding the input signals that do influence the DUT
behavior with the output of the fuzzer.

Compile Verilog / C++ test harness into C++ executable
(Verilation): The synthesizable Verilog code is then converted
to cycle-accurate C++ behavioral model using Verilator which
then, along with C++ test harness is compiled into a simulation
executable by Verilator. Verilator is a free and open-source
software tool which converts synthesizable Verilog to a cycle-
accurate behavioral model in C++ or SystemC. The models
typically offer higher performance than the more widely used
event-driven simulators, which can process the entire Verilog
language and model behavior within the clock cycle. The
verilated SIP model in essence is a C++ executable that can run
in the user space and reads inputs from a file on disk. This is an
ideal target for coverage driven fuzzers such as AFL++. To
instrument the executables for AFL++, we can redirect Verilator
to use afl-g++ instead of g++ to enable coverage driven unique
test case generation (avoiding redundant tests).

Fuzz the interfaces (using AFL++): This is a simple command
that launches AFL++ to fuzz the inputs to the C++ binary.
Generally, fuzzers log testcases that generate a crash or a hang.
But we note that fuzzing is not always about finding crashes and
memory corruption issues in the system under test. It is a holistic
approach to automate generation of malformed inputs to drive
the system under test to undefined or unexpected spaces. One
can write assertions or define rules to monitor and log
malformed inputs that drive the DUT to such unexpected states.

2

Fuzzing Soft IPs for Fun & Profit

Techniques to automatically generate assertions or rules
including the test harness by parsing design specification
documents and Verilog modules along with tainting inputs to
understand how inputs flow during simulation can be explored
to improve the capabilities of this fuzzer.

Review/Replay/Reuse testcases that cause failures: The
goal here is to retrieve the testcases that were logged by the
fuzzer and replay those as directed tests in a simulation or
emulation environment to ascertain the correctness or
incorrectness of the DUT. Moreover, these testcases can be
reused in a regression environment to verify fixes are in place.
From writing a C++ test harness to replaying the testcases in
another verification environment, there are automation
opportunities to streamline this process and mainstream
adoption of the proposed SIP fuzzing methodology.

3 Challenges & Proposed Solutions
Before we dive into the results of our case studies, we illustrate
the limitations of state-of-the-art fuzzers such AFL++ to support
SIP fuzzing. To address these limitations, we propose specific
solutions or workarounds.

Fuzzers are not built to handle hardware state machines.
Finite State Machine (FSM) outputs depend on current inputs,
past inputs, current states, and past states (are sequential vs
combinatorial), e.g., Moore machines, Mealy machines. An out
of box fuzzer is not built to remember past states and past inputs
between fuzz iterations, so state transitions need to be
accurately handled between each fuzz iteration. The
intermediate state of a Verilated model may be saved on disk,
so that it may later be restored. This save/restore operation can
be called from the C++ test harness. Leveraging this
save/restore ability between each fuzz iteration enables the
fuzzer to drive the DUT to the next state based on previous
state, previous input, and current input to generate the output
signal. It also allows the fuzzer to not only log test inputs causing
failures but also save a snapshot of the state during failure for
later introspection.

Generating clock and reset signals is not a native fuzzer
capability. Without internal modifications, out of the box
software fuzzers cannot generate a clock signal to drive state
transitions in the DUT. Similarly, instructing a software fuzzer to
assert or deassert a reset signal after “n” clock cycles or when
specific conditions are met is challenging. The challenge with
clock signal is twofold, we need to toggle the clock between
each fuzz iteration, while also monitor the clock context, i.e., for
a rising edge or negative edge, to perform state transitions. Both
these issues can be solved using the state save/restore ability
provided by Verilator. On the first fuzz iteration, current state is
saved to disk. On subsequent fuzz iterations, previous sate is
restored from the disk, previous state of the clock is read,
toggled, and input to the DUT in the current state. This new state
is now saved to the disk including the clock and the process
repeats until a failure case is encountered and logged. A reset
signal can similarly be asserted or deasserted via the test
harness at random, after ‘n’ clock cycles or by monitoring state
transitions and checking to see if a specific condition is met (e.g.,
stuck states).

Hangs and crashes are unlike software in hardware. Buffer
overflows causing crashes or application resource exhaustion
leading to hangs are software centric; these can have a
completely different context in hardware fuzzing. Hardware
hangs can be due to and not limited to transitions to invalid

states, states stuck without transitions, memory or I/O reads that
do not return, waiting indefinitely for completions during non-
posted transactions etcetera. On the other hand, a crash occurs
when the fuzzer encounters runtime assertions that include
$fatal and $error in the verilated DUT. Similarly, a runtime
warning or runtime information message is generated when the
fuzzer encounters a $warning or $info assertion respectively.
This ability of the fuzzer to comprehend Verilog assertions and
behave accordingly is powerful and allows us to monitor for
interesting behaviors that may have security impact.

Non-asserted failures are risky. Verilog assertions are great if
they are written to catch those corner cases. In security critical
flows, there can be undetectable scenarios where assertions are
missed but it can still result in an unexpected hardware behavior,
invalid (potentially dangerous) output or undefined state. For
example, a privilege escalation bug leading to asset access by
an untrusted agent can go undetected during fuzzing because
an assertion is missing, consequently the fuzzer is made to
believe this is indeed a valid scenario and no failure testcase is
logged. Fuzzers are generally not good at catching these types
of failures. Hence, one must ensure that assertions are correctly
written to capture all potential failure scenarios or the test
harness itself can incorporate these checks as a library of issues
to evaluate for during SIP fuzzing.

Fuzzing multiple stimuli can get complex. Fuzzing multiple
interfaces at the same time can easily get complicated when
using a file fuzzer approach. To drive multiple stimuli accurately,
we need grammar-based test case generation combined with
coverage driven fuzzing. Not many fuzzers combine these two
capabilities in one package and even if they exist, they are
poorly maintained. Of late, there is a growing interest in custom
mutators for AFL++ to handle highly structured inputs, with
opensource contributions. We are starting to explore these
custom mutators for AFL++ for SIP interface fuzzing. While this
is ongoing, currently we are resorting to splitting the fuzzed input
blob bitwise to drive multiple input signals. This requires us to
clearly understand the bit widths of each input signal, parse the
fuzzed input data blob bitwise, use the bitwise data to drive each
bit of the input signal, and thereby continue to leverage the
fuzzer to generate tests to drive multiple stimuli.

Fuzzing hierarchical designs. Hierarchical designs facilitate
design of complex architectures and promote design reuse.
Fuzzing such designs can get complex and requires a good
understanding of the design hierarchy. Verilator supports
inclusion of /*verilator hier_block*/ metacomment in the
Verilog code of instantiated submodules and nested hierarchical
blocks to enable compilation of the entire design hierarchy into
a single executable for testing purposes.

Not All Verilog is Synthesizable. Synthesizable Verilog
translates into gates, registers, RAMs, etcetera. But not all
Verilog should be synthesized, e.g., delays are implemented
using clocks and flipflops or loops end up as multiple hardware
instances, which may not be the ideal expected outcome,
especially for someone who is accustomed to writing and
compiling C/C++ code. Although this is not really a fuzzer issue,
we think it might be worth noting here since we are in essence
discussing fuzzing C++ binaries using AFL++ in this paper.

4 Case Study Results
We evaluate the proposed methodology and tooling to identify
certain hardware weaknesses in Verilog code snippets provided
as examples to demonstrate the CWE. We selected these CWE

3

Fuzzing Soft IPs for Fun & Profit

[6] based on the availability of sample code in the online CWE
documentation and the suitability for behavioral modeling to
demonstrate the efficacy of the proposed approach. This is by
no means a comprehensive analysis of all hardware
weaknesses for fuzzing, rather a proving ground for future work.
We have not included the vulnerable Verilog code snippets in
this paper for the sake of readability, but the reader is
encouraged to review the code snippets accessible via online
CWE documentation linked below and in the reference section
[6].

CWE-1311 - Improper Translation of Security Attributes by
Fabric Bridge: This weakness arises when a bridge IP block
incorrectly translates security attributes from either trusted to
untrusted or from untrusted to trusted when converting from one
fabric protocol to another. In this CWE example, the OCP2AHB
bridge interfaces between Open Core Protocol (OCP) and
AMBA-Advanced High-Performance Bus (AHB) end points.
OCP uses MReqInfo signal to indicate security attributes,
whereas AHB uses HPROT signal to indicate the security
attributes. The IP internal logic converts the incoming 5-bit
identity (MReqInfo) to output a 2-bit identity (HPROT).

The values 5’h11, 5’h10, 5’h0F, 5’h0D, 5’h0C, 5’h0B, 5’h09,
5’h08, 5’h04, and 5’h02 in MReqInfo indicate that the request is
coming from a trusted state of the OCP bus controller. Values
5’h1F, 5’h0E, and 5’h00 indicate untrusted state. HPROT values
2’b00 and 2’b10 are considered trusted, and 2’b01 and 2’b11
are considered untrusted. By fuzzing the incoming 5-bit
MReqInfo, we trigger scenarios where trusted identities are
translated to untrusted identities and vice versa. We catch these
issues by including an allowed list in the test harness, which is
evaluated every fuzz iteration and violations are logged.

CWE-1245 - Improper Finite State Machines (FSMs) in
Hardware Logic: FSMs can be used to indicate the current
security state of the system. Faulty FSM designs that do not
account for all states, either through undefined states or through
incorrect implementation, can drive the system to an unstable
state from which the system cannot recover without a reset, thus
causing a DoS. Depending on the FSM use case, an attacker
may also gain additional privileges to launch further attacks and
compromise system security.

In this CWE example, the FSM assigns the output based on the
value of a register, which is determined based on externally
provided input. A case statement in the implementation is
missing a default statement and does not handle the scenario
where certain inputs can push the system to an undefined state
leading to an unexpected outcome such as denial of service by
being stuck at an undefined state. We trigger such scenarios by
fuzzing the input values. Since the state is internal to SIP and
not exposed externally as a top-level parameter, we are required
to declare such internal signals or variables public by including
an inline comment /*verilator public_flat_rw*/ next to the signal
or variable declaration in the Verilog code and use Verilator’s
Verification Procedural Interface (VPI) in the test harness to
access those public values during runtime. By doing so, we can
perform runtime state introspection to monitor for states that are
stuck across multiple clock cycles and terminate fuzzing by
logging a snapshot of the incorrect state for offline analysis.

CWE-1298 - Hardware Logic Contains Race Conditions: A
race condition in logic circuits typically occurs when a logic gate
gets inputs from signals that have traversed different paths while
originating from the same source. Such inputs to the gate can
change at slightly different times in response to a change in the

source signal. This results in a timing error or a glitch (temporary
or permanent) that causes the output to change to an unwanted
state before settling back to the desired state. If such timing
errors occur in access control logic or finite state machines that
are implemented in security sensitive flows, an attacker might
exploit them to circumvent existing protections.

In this CWE example, we evaluate a 2x1 multiplexor using logic
gates. The output signal 'z' periodically changes to an unwanted
state. Thus, any logic that references signal 'z' when it is in an
unwanted state ends up in an undefined state. We tried to trigger
such glitching scenarios by fuzzing the multiplexer inputs
(input0, input1 and select signals). We found that Verilator does
not model time delays. Any timing issues such as race
conditions cannot be evaluated using Verilator.

CWE-1280 - Access Control Check Implemented After Asset
is Accessed: The logic we consider implements a hardware-
based access control check. The asset should be accessible
only after the check is successful. If, however, this operation is
not atomic and the asset is accessed before the check is
complete, the security of the system may be compromised, i.e.,
an untrusted agent can have access to the asset since the
access control check is completely bypassed.

The logic implements a protected register. The register content
is the asset. Only transactions made by a specific agent
(indicated by signal usr_id) 0x4 are allowed to modify the
register contents. The signal grant_access is used to provide
asset access to the requester via data_out. This buggy
implementation uses Verilog blocking assignments for data_out
and grant_access. Therefore, these assignments happen
sequentially (i.e., data_out is updated to new value first, and
grant_access is updated the next) and not in parallel. Therefore,
data_out is allowed asset access even before the access control
check is complete and grant_access signal is set. Since
grant_access does not have a reset value, it will randomly go to
either 0 or 1. We trigger this scenario by fuzzing the input usr_id
and monitoring for the specific condition where data_out equals
data_in value while grant_access is not 1. Since grant_access
is an internal signal and not exposed at the top level, we declare
it public as explained in the CWE-1245 section and use
Verilator’s VPI for runtime access to internal signals. We verify
the correctness of the fuzzer behavior by tying grant_access to
1 and observing there are no failures.

CWE-1271 - Uninitialized Value on Reset for Registers
Holding Security Settings: In this CWE example, a positive
clock edge triggered flip-flop implements a lock bit for test and
debug interface. When the circuit is first brought out of reset, the
state of the flip-flop will be unknown until the enable signal and
D-input signals update the flip-flop state. Before the registers are
initialized, there will be a window during which the device is in
an insecure state and may be vulnerable to attack. In this
example, an attacker can reset the device until the test and
debug interface is unlocked and access the test interface until
the lock signal is driven to a known state by the logic.

To simulate this attack scenario, we fuzz the D-input while we
toggle the reset signal randomly and allow enable signal to be
uninitialized, thus enable will randomly go to either 0 or 1. We
then monitor for scenarios where the enable signal becomes 1
and attacker-controlled D-input feeds a 0 to disable the lock bit.
While we did observe failure scenarios, we believe further
investigation of reset flow fuzzing is required, given that Verilator
is a two-state simulator and does not support metastability
scenarios.

4

Fuzzing Soft IPs for Fun & Profit

The following table summarizes the results of the CWE case
study. Additionally, all failure scenarios were detected within the
first minute of fuzzing, it is fast.

CWE

CWE Focus Similar
Evaluation
Areas

SIP Fuzzing
Evaluation
Results

CWE-
1311

Improper
Translation
of Security
Attributes by
Fabric
Bridge

Address
decoding, packet
parsing, message
routing, format
conversions,
opcode handling.

Good target for
SIP fuzzing,
applicable for
detecting these
types of issues.

CWE-
1245

Improper
Finite State
Machines
(FSMs) in
Hardware
Logic

States stuck at
certain values
(deadlocks),
Unreachable
states,
metastable
states, livelocks.

Deadlocks can
be detected.
Unreachable
states,
metastable
states or
livelocks
cannot be
easily
detected.

CWE-
1298

Hardware
Logic
Contains
Race
Conditions

Timing issues,
signal glitching,
concurrency
issues.

These issues
are not
detectable by
SIP fuzzing.

CWE-
1280

Access
Control
Check
Implemented
After Asset
Access

Monitoring asset
access
implemented
using Verilog
blocking
statements
(sequential).

Good target for
SIP fuzzing,
applicable for
detecting these
types of issues.

CWE-
1271

Uninitialized
Value on
Reset for
Registers
Holding
Security
Settings

Reset flows,
values of
registers or
signals during
reset,
metastability.

Needs further
investigation.
Prone to false
positives or
missing real
issues. Mostly
experimental at
this time.

Verilated models are behavioral and cycle accurate, they do not
represent synthesized logic. Hence, we are not able to
accurately evaluate gate level logic leading to certain side
channels for example. Since, SIPs are delivered as RTL
modules, we do not consider fuzzing synthesized designs in
scope for our work. But it does permit reusing the tests
generated during fuzzing on synthesized logic. Although
Verilator supports assigning 1’bz and 1’bx to signals, being a
two-state simulator, it seems incapable of driving a signal to
these values during simulations, so explicit 1'bz or 1'bx
assignments may get converted to a binary representation
internally.

5 Conclusion & Future Plans
Fuzzing hardware in pre-silicon environment is gaining a lot of
attention in the industry. SIP fuzzing leveraging Verilog to C++
conversion is an emerging technique that can provide a powerful

complementary capability to drive security assurance of our
hardware designs. We believe this approach is promising and
can achieve acceptance in the SIP verification community in due
course. We propose exploring how the SIP fuzzing framework
can utilize existing verification collateral via automation to scale
adoption. Another key area to explore is how to implement a
reusable library of assertions for a broader set of hardware
weaknesses, i.e., attack patterns, that the SIP fuzzing
framework can leverage. The tools themselves are free,
opensource, community supported and the barrier to entry is
considerably low.

6 References
[1] Yu Zhang, Wenlong Feng and Mengxing Huang, Automatic
Generation of High-Coverage Tests for RTL Designs using
Software Techniques and Tools, arXiv:1602.06038.

[2] Kevin Laeufer, Jack Koenig, Donggyu Kim, Jonathan
Bachrach and Koushik Sen, RFUZZ: Coverage-Directed Fuzz
Testing of RTL on FPGAs, IEEE/ACM International Conference
on Computer-Aided Design 2018: 1-8.

[3] Timothy Trippel, Kang G. Shin, Alex Chernyakhovsky, Garret
Kelly and Matthew Hicks, Fuzzing Hardware Like Software,
arXiv:2102.02308.

[4] Verilator [Online], Available:
https://www.veripool.org/verilator/

[5] AFL++ Overview [Online], Available: https://aflplus.plus/

[6] Common Weakness Enumeration [Online], Available:
https://cwe.mitre.org/index.html

[7] Sadullah Canakci, Leila Delshadtehrani, Furkan Eris,
Michael Bedford Taylor, Manuel Egele and Ajay Joshi,
DirectFuzz: Automated Test Generation for RTL Designs using
Directed Graybox Fuzzing, 58th ACM/IEEE Design Automation
Conference (DAC) 2021.

