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1 Introduction 
The growing complexity of systems coupled with the advent of 
increasingly sophisticated security attacks highlights a dire need 
for advanced automated vulnerability analysis tools. Fuzzing is 
an effective proven technique to find security critical issues in 
systems, often without needing to fully understand the internals 
of the system under test. The main purpose of fuzzing is not to 
test the correct functionality, but to explore and test that 
undefined area. Fuzzing is a form of negative testing in which 
an interface is tested with a large quantity of randomized, invalid 
input, with the goal of triggering a failure. While fuzzing has been 
widely adopted in software testing, fuzzing tools and techniques 
to find security bugs in hardware are fast gaining traction in both 
academia and industry [1][2][3][7]. 

In electronic design, a semiconductor intellectual property (IP) 
core is a reusable unit of logic, cell, or integrated circuit layout 
design. Soft IPs (SIP) are IP cores generally offered as 
synthesizable RTL modules. These are developed in Hardware 
description language like Verilog. A SIP implements a specific 
logic that is concise enough to be tested using fuzzing 
techniques while not running into scalability issues often 
encountered while testing an SoC. Hence, we focus on SIP 
interface fuzzing to constrain our Design Under Test (DUT) to a 
specific logic implementation. 

Fuzzing stimuli to SIP Verilog modules in a simulation 
environment is challenging largely because simulation is slow. 
Even if test cases are generated in parallel, simulation needs to 
happen in parallel to avoid a bottleneck, along with enabling 
coherency between different stimulus generators and 
simulations to avoid repetition of testcases. This is not easily 
scalable. On the other hand, FPGA models are very useful in 
enabling faster verification but require efforts to set up emulation 
or FPGA prototype. Converting C++ or SystemC to Verilog has 
been well researched with many commercial and opensource 
tools. At the same time, compiling Verilog into C++ executables 
or SystemC models is fast gaining traction with tools such as 
Verilator [4] in the forefront. While this opens exciting new 
opportunities to harness state of the art coverage driven 
scalable fuzzers such as AFL++ [5] to test Verilog modules by 
converting them to C++ binaries, it also comes with the perils of 
treading uncharted territory. While the technique of applying 
software fuzzers to verilated hardware modules has been 
proposed earlier [1][2][3][7], we believe there are fundamental 
questions that are yet to be answered and solutions to success 
that are not discussed in previous literature. Previous works 
have primarily focused on coverage metrics and not on 
identifying specific CWEs. 

With this in view, to complement existing verification methods, 
in this paper we present a newer approach to fuzzing SIP 
modules, i.e., using AFL++ to fuzz interfaces of “verilated” SIPs. 
In the next section, we describe the proposed methodology and 
tooling required to enable SIP fuzzing. We follow that up with a 
discussion on the challenges we encountered, recommend 

solutions, and demonstrate this approach on selected hardware 
Common Weakness Enumerations (CWE), both of which are 
novel contributions of our work. Finally, we summarize the paper 
with conclusions and future plans. 

2 Methodology & Tooling 
Identify/Isolate the logic & interface to fuzz: This initial step 
is critical to a successful fuzzing outcome. As with any 
verification methodology, we need to clearly identify the 
boundaries of the logic we intend to test. Although the SIP 
interface at the top-level module is an excellent fuzzing target, it 
may require modelling behavior of other logic that interacts with 
the SIP. In many instances, these interactions may already be 
defined previously to support SIP verification, e.g., Bus 
Functional Models (BFM). Additionally, debugging the internals 
of complex IPs can become problematic to identify failure 
scenarios. On the other hand, we can drill further down in the 
SIP logic to isolate sections of code that implement a security 
critical functionality, e.g., SAI based access controls, PCIE 
packet parsing, address decoding, opcode handling etcetera 
and focus on fuzzing the interfaces of such logic in isolation.  

Write a C++ test harness: Next, we write a C++ test harness, 
which defines the standard main() that instantiates the cycle-
accurate behavioral model as a C++ object. The C++ object in 
this case is the verilated SIP DUT. This test harness must read 
stimulus from a file and input it to the DUT. The goal is to 
malform this input file using fuzzers such as AFL++ and use it to 
drive DUT stimuli. To limit the interfaces to fuzz, we can hold 
input signals that do not influence DUT behavior as constant 
while feeding the input signals that do influence the DUT 
behavior with the output of the fuzzer. 

Compile Verilog / C++ test harness into C++ executable 
(Verilation): The synthesizable Verilog code is then converted 
to cycle-accurate C++ behavioral model using Verilator which 
then, along with C++ test harness is compiled into a simulation 
executable by Verilator. Verilator is a free and open-source 
software tool which converts synthesizable Verilog to a cycle-
accurate behavioral model in C++ or SystemC. The models 
typically offer higher performance than the more widely used 
event-driven simulators, which can process the entire Verilog 
language and model behavior within the clock cycle. The 
verilated SIP model in essence is a C++ executable that can run 
in the user space and reads inputs from a file on disk. This is an 
ideal target for coverage driven fuzzers such as AFL++. To 
instrument the executables for AFL++, we can redirect Verilator 
to use afl-g++ instead of g++ to enable coverage driven unique 
test case generation (avoiding redundant tests). 

Fuzz the interfaces (using AFL++): This is a simple command 
that launches AFL++ to fuzz the inputs to the C++ binary. 
Generally, fuzzers log testcases that generate a crash or a hang. 
But we note that fuzzing is not always about finding crashes and 
memory corruption issues in the system under test. It is a holistic 
approach to automate generation of malformed inputs to drive 
the system under test to undefined or unexpected spaces. One 
can write assertions or define rules to monitor and log 
malformed inputs that drive the DUT to such unexpected states. 
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Techniques to automatically generate assertions or rules 
including the test harness by parsing design specification 
documents and Verilog modules along with tainting inputs to 
understand how inputs flow during simulation can be explored 
to improve the capabilities of this fuzzer. 

Review/Replay/Reuse testcases that cause failures: The 
goal here is to retrieve the testcases that were logged by the 
fuzzer and replay those as directed tests in a simulation or 
emulation environment to ascertain the correctness or 
incorrectness of the DUT. Moreover, these testcases can be 
reused in a regression environment to verify fixes are in place. 
From writing a C++ test harness to replaying the testcases in 
another verification environment, there are automation 
opportunities to streamline this process and mainstream 
adoption of the proposed SIP fuzzing methodology. 

3 Challenges & Proposed Solutions 
Before we dive into the results of our case studies, we illustrate 
the limitations of state-of-the-art fuzzers such AFL++ to support 
SIP fuzzing. To address these limitations, we propose specific 
solutions or workarounds. 

Fuzzers are not built to handle hardware state machines. 
Finite State Machine (FSM) outputs depend on current inputs, 
past inputs, current states, and past states (are sequential vs 
combinatorial), e.g., Moore machines, Mealy machines. An out 
of box fuzzer is not built to remember past states and past inputs 
between fuzz iterations, so state transitions need to be 
accurately handled between each fuzz iteration. The 
intermediate state of a Verilated model may be saved on disk, 
so that it may later be restored. This save/restore operation can 
be called from the C++ test harness. Leveraging this 
save/restore ability between each fuzz iteration enables the 
fuzzer to drive the DUT to the next state based on previous 
state, previous input, and current input to generate the output 
signal. It also allows the fuzzer to not only log test inputs causing 
failures but also save a snapshot of the state during failure for 
later introspection. 

Generating clock and reset signals is not a native fuzzer 
capability. Without internal modifications, out of the box 
software fuzzers cannot generate a clock signal to drive state 
transitions in the DUT. Similarly, instructing a software fuzzer to 
assert or deassert a reset signal after “n” clock cycles or when 
specific conditions are met is challenging. The challenge with 
clock signal is twofold, we need to toggle the clock between 
each fuzz iteration, while also monitor the clock context, i.e., for 
a rising edge or negative edge, to perform state transitions. Both 
these issues can be solved using the state save/restore ability 
provided by Verilator. On the first fuzz iteration, current state is 
saved to disk. On subsequent fuzz iterations, previous sate is 
restored from the disk, previous state of the clock is read, 
toggled, and input to the DUT in the current state. This new state 
is now saved to the disk including the clock and the process 
repeats until a failure case is encountered and logged. A reset 
signal can similarly be asserted or deasserted via the test 
harness at random, after ‘n’ clock cycles or by monitoring state 
transitions and checking to see if a specific condition is met (e.g., 
stuck states). 

Hangs and crashes are unlike software in hardware. Buffer 
overflows causing crashes or application resource exhaustion 
leading to hangs are software centric; these can have a 
completely different context in hardware fuzzing. Hardware 
hangs can be due to and not limited to transitions to invalid 

states, states stuck without transitions, memory or I/O reads that 
do not return, waiting indefinitely for completions during non-
posted transactions etcetera. On the other hand, a crash occurs 
when the fuzzer encounters runtime assertions that include 
$fatal and $error in the verilated DUT. Similarly, a runtime 
warning or runtime information message is generated when the 
fuzzer encounters a $warning or $info assertion respectively. 
This ability of the fuzzer to comprehend Verilog assertions and 
behave accordingly is powerful and allows us to monitor for 
interesting behaviors that may have security impact.  

Non-asserted failures are risky. Verilog assertions are great if 
they are written to catch those corner cases. In security critical 
flows, there can be undetectable scenarios where assertions are 
missed but it can still result in an unexpected hardware behavior, 
invalid (potentially dangerous) output or undefined state. For 
example, a privilege escalation bug leading to asset access by 
an untrusted agent can go undetected during fuzzing because 
an assertion is missing, consequently the fuzzer is made to 
believe this is indeed a valid scenario and no failure testcase is 
logged. Fuzzers are generally not good at catching these types 
of failures. Hence, one must ensure that assertions are correctly 
written to capture all potential failure scenarios or the test 
harness itself can incorporate these checks as a library of issues 
to evaluate for during SIP fuzzing. 

Fuzzing multiple stimuli can get complex. Fuzzing multiple 
interfaces at the same time can easily get complicated when 
using a file fuzzer approach. To drive multiple stimuli accurately, 
we need grammar-based test case generation combined with 
coverage driven fuzzing. Not many fuzzers combine these two 
capabilities in one package and even if they exist, they are 
poorly maintained. Of late, there is a growing interest in custom 
mutators for AFL++ to handle highly structured inputs, with 
opensource contributions. We are starting to explore these 
custom mutators for AFL++ for SIP interface fuzzing. While this 
is ongoing, currently we are resorting to splitting the fuzzed input 
blob bitwise to drive multiple input signals. This requires us to 
clearly understand the bit widths of each input signal, parse the 
fuzzed input data blob bitwise, use the bitwise data to drive each 
bit of the input signal, and thereby continue to leverage the 
fuzzer to generate tests to drive multiple stimuli. 

Fuzzing hierarchical designs. Hierarchical designs facilitate 
design of complex architectures and promote design reuse. 
Fuzzing such designs can get complex and requires a good 
understanding of the design hierarchy. Verilator supports 
inclusion of /*verilator hier_block*/ metacomment in the 
Verilog code of instantiated submodules and nested hierarchical 
blocks to enable compilation of the entire design hierarchy into 
a single executable for testing purposes. 

Not All Verilog is Synthesizable. Synthesizable Verilog 
translates into gates, registers, RAMs, etcetera. But not all 
Verilog should be synthesized, e.g., delays are implemented 
using clocks and flipflops or loops end up as multiple hardware 
instances, which may not be the ideal expected outcome, 
especially for someone who is accustomed to writing and 
compiling C/C++ code. Although this is not really a fuzzer issue, 
we think it might be worth noting here since we are in essence 
discussing fuzzing C++ binaries using AFL++ in this paper. 

4 Case Study Results 
We evaluate the proposed methodology and tooling to identify 
certain hardware weaknesses in Verilog code snippets provided 
as examples to demonstrate the CWE.  We selected these CWE 
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[6] based on the availability of sample code in the online CWE 
documentation and the suitability for behavioral modeling to 
demonstrate the efficacy of the proposed approach. This is by 
no means a comprehensive analysis of all hardware 
weaknesses for fuzzing, rather a proving ground for future work. 
We have not included the vulnerable Verilog code snippets in 
this paper for the sake of readability, but the reader is 
encouraged to review the code snippets accessible via online 
CWE documentation linked below and in the reference section 
[6]. 

CWE-1311 - Improper Translation of Security Attributes by 
Fabric Bridge: This weakness arises when a bridge IP block 
incorrectly translates security attributes from either trusted to 
untrusted or from untrusted to trusted when converting from one 
fabric protocol to another. In this CWE example, the OCP2AHB 
bridge interfaces between Open Core Protocol (OCP) and 
AMBA-Advanced High-Performance Bus (AHB) end points. 
OCP uses MReqInfo signal to indicate security attributes, 
whereas AHB uses HPROT signal to indicate the security 
attributes. The IP internal logic converts the incoming 5-bit 
identity (MReqInfo) to output a 2-bit identity (HPROT).  

The values 5’h11, 5’h10, 5’h0F, 5’h0D, 5’h0C, 5’h0B, 5’h09, 
5’h08, 5’h04, and 5’h02 in MReqInfo indicate that the request is 
coming from a trusted state of the OCP bus controller. Values 
5’h1F, 5’h0E, and 5’h00 indicate untrusted state. HPROT values 
2’b00 and 2’b10 are considered trusted, and 2’b01 and 2’b11 
are considered untrusted. By fuzzing the incoming 5-bit 
MReqInfo, we trigger scenarios where trusted identities are 
translated to untrusted identities and vice versa. We catch these 
issues by including an allowed list in the test harness, which is 
evaluated every fuzz iteration and violations are logged. 

CWE-1245 - Improper Finite State Machines (FSMs) in 
Hardware Logic: FSMs can be used to indicate the current 
security state of the system. Faulty FSM designs that do not 
account for all states, either through undefined states or through 
incorrect implementation, can drive the system to an unstable 
state from which the system cannot recover without a reset, thus 
causing a DoS. Depending on the FSM use case, an attacker 
may also gain additional privileges to launch further attacks and 
compromise system security. 

In this CWE example, the FSM assigns the output based on the 
value of a register, which is determined based on externally 
provided input. A case statement in the implementation is 
missing a default statement and does not handle the scenario 
where certain inputs can push the system to an undefined state 
leading to an unexpected outcome such as denial of service by 
being stuck at an undefined state. We trigger such scenarios by 
fuzzing the input values. Since the state is internal to SIP and 
not exposed externally as a top-level parameter, we are required 
to declare such internal signals or variables public by including 
an inline comment /*verilator public_flat_rw*/ next to the signal 
or variable declaration in the Verilog code and use Verilator’s 
Verification Procedural Interface (VPI) in the test harness to 
access those public values during runtime. By doing so, we can 
perform runtime state introspection to monitor for states that are 
stuck across multiple clock cycles and terminate fuzzing by 
logging a snapshot of the incorrect state for offline analysis.   

CWE-1298 - Hardware Logic Contains Race Conditions: A 
race condition in logic circuits typically occurs when a logic gate 
gets inputs from signals that have traversed different paths while 
originating from the same source. Such inputs to the gate can 
change at slightly different times in response to a change in the 

source signal. This results in a timing error or a glitch (temporary 
or permanent) that causes the output to change to an unwanted 
state before settling back to the desired state. If such timing 
errors occur in access control logic or finite state machines that 
are implemented in security sensitive flows, an attacker might 
exploit them to circumvent existing protections. 

In this CWE example, we evaluate a 2x1 multiplexor using logic 
gates. The output signal 'z' periodically changes to an unwanted 
state. Thus, any logic that references signal 'z' when it is in an 
unwanted state ends up in an undefined state. We tried to trigger 
such glitching scenarios by fuzzing the multiplexer inputs 
(input0, input1 and select signals). We found that Verilator does 
not model time delays. Any timing issues such as race 
conditions cannot be evaluated using Verilator. 

CWE-1280 - Access Control Check Implemented After Asset 
is Accessed: The logic we consider implements a hardware-
based access control check. The asset should be accessible 
only after the check is successful. If, however, this operation is 
not atomic and the asset is accessed before the check is 
complete, the security of the system may be compromised, i.e., 
an untrusted agent can have access to the asset since the 
access control check is completely bypassed. 

The logic implements a protected register. The register content 
is the asset. Only transactions made by a specific agent 
(indicated by signal usr_id) 0x4 are allowed to modify the 
register contents. The signal grant_access is used to provide 
asset access to the requester via data_out. This buggy 
implementation uses Verilog blocking assignments for data_out 
and grant_access. Therefore, these assignments happen 
sequentially (i.e., data_out is updated to new value first, and 
grant_access is updated the next) and not in parallel. Therefore, 
data_out is allowed asset access even before the access control 
check is complete and grant_access signal is set. Since 
grant_access does not have a reset value, it will randomly go to 
either 0 or 1. We trigger this scenario by fuzzing the input usr_id 
and monitoring for the specific condition where data_out equals 
data_in value while grant_access is not 1. Since grant_access 
is an internal signal and not exposed at the top level, we declare 
it public as explained in the CWE-1245 section and use 
Verilator’s VPI for runtime access to internal signals. We verify 
the correctness of the fuzzer behavior by tying grant_access to 
1 and observing there are no failures. 

CWE-1271 - Uninitialized Value on Reset for Registers 
Holding Security Settings: In this CWE example, a positive 
clock edge triggered flip-flop implements a lock bit for test and 
debug interface. When the circuit is first brought out of reset, the 
state of the flip-flop will be unknown until the enable signal and 
D-input signals update the flip-flop state. Before the registers are 
initialized, there will be a window during which the device is in 
an insecure state and may be vulnerable to attack. In this 
example, an attacker can reset the device until the test and 
debug interface is unlocked and access the test interface until 
the lock signal is driven to a known state by the logic.  

To simulate this attack scenario, we fuzz the D-input while we 
toggle the reset signal randomly and allow enable signal to be 
uninitialized, thus enable will randomly go to either 0 or 1. We 
then monitor for scenarios where the enable signal becomes 1 
and attacker-controlled D-input feeds a 0 to disable the lock bit. 
While we did observe failure scenarios, we believe further 
investigation of reset flow fuzzing is required, given that Verilator 
is a two-state simulator and does not support metastability 
scenarios. 
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The following table summarizes the results of the CWE case 
study. Additionally, all failure scenarios were detected within the 
first minute of fuzzing, it is fast. 

 

CWE 
# 

CWE Focus Similar 
Evaluation 
Areas 

SIP Fuzzing 
Evaluation 
Results 

CWE-
1311  

Improper 
Translation 
of Security 
Attributes by 
Fabric 
Bridge 

Address 
decoding, packet 
parsing, message 
routing, format 
conversions, 
opcode handling. 

Good target for 
SIP fuzzing, 
applicable for 
detecting these 
types of issues. 

CWE-
1245  

Improper 
Finite State 
Machines 
(FSMs) in 
Hardware 
Logic 

States stuck at 
certain values 
(deadlocks), 
Unreachable 
states, 
metastable 
states, livelocks. 

Deadlocks can 
be detected. 
Unreachable 
states, 
metastable 
states or 
livelocks 
cannot be 
easily 
detected. 

CWE-
1298  

Hardware 
Logic 
Contains 
Race 
Conditions 

Timing issues, 
signal glitching, 
concurrency 
issues. 

These issues 
are not 
detectable by 
SIP fuzzing. 

CWE-
1280  

Access 
Control 
Check 
Implemented 
After Asset 
Access 

Monitoring asset 
access 
implemented 
using Verilog 
blocking 
statements 
(sequential). 

Good target for 
SIP fuzzing, 
applicable for 
detecting these 
types of issues. 

CWE-
1271  

Uninitialized 
Value on 
Reset for 
Registers 
Holding 
Security 
Settings 

Reset flows, 
values of 
registers or 
signals during 
reset, 
metastability. 

Needs further 
investigation. 
Prone to false 
positives or 
missing real 
issues. Mostly 
experimental at 
this time. 

Verilated models are behavioral and cycle accurate, they do not 
represent synthesized logic. Hence, we are not able to 
accurately evaluate gate level logic leading to certain side 
channels for example. Since, SIPs are delivered as RTL 
modules, we do not consider fuzzing synthesized designs in 
scope for our work. But it does permit reusing the tests 
generated during fuzzing on synthesized logic. Although 
Verilator supports assigning 1’bz and 1’bx to signals, being a 
two-state simulator, it seems incapable of driving a signal to 
these values during simulations, so explicit 1'bz or 1'bx 
assignments may get converted to a binary representation 
internally.  

5 Conclusion & Future Plans 
Fuzzing hardware in pre-silicon environment is gaining a lot of 
attention in the industry. SIP fuzzing leveraging Verilog to C++ 
conversion is an emerging technique that can provide a powerful 

complementary capability to drive security assurance of our 
hardware designs. We believe this approach is promising and 
can achieve acceptance in the SIP verification community in due 
course. We propose exploring how the SIP fuzzing framework 
can utilize existing verification collateral via automation to scale 
adoption. Another key area to explore is how to implement a 
reusable library of assertions for a broader set of hardware 
weaknesses, i.e., attack patterns, that the SIP fuzzing 
framework can leverage. The tools themselves are free, 
opensource, community supported and the barrier to entry is 
considerably low. 
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