

1/10 page

Fuzzing Fact Sheet

How Fuzz Testing
Enables Developers
to Ship Secure Software Fast

2/10 page

What is Fuzz Testing?
Fuzz Testing is a dynamic testing method used for finding functional bugs and security
issues in software. During a fuzz test a program is fed with invalid, unexpected, or
random inputs, with the aim to crash the application. This is currently one of the most
effective approaches to automatically detect bugs and vulnerabilities in software.

Fuzzing Explained on the Example of an instrumented Image Parser

With Fuzzing You Can Protect Your Code Against the Unexpected

Modern fuzzers executes a program with invalid, unexpected, or random inputs. This
way your security tests can cover unlikely or unexpected edge cases, that would not
be detected with other testing approaches.

With Fuzzing Each Finding Leads to More Findings

Once a fuzzing solution found an input that has caused a crash, it uses mutation
algorithms to generate even more inputs which can reproduce the finding with a high
probability.

With Fuzzing Developers Can Automate Their Security Testing at Scale

Modern fuzzing solutions can automatically analyse the structure of the code they test.
They use this information to generate thousands of test cases per second, and they
also mark each path the inputs take through the program. This way a fuzzer gets
details feedback about the code coverage, the inputs are reaching during the execution
of the code.

https://app.code-intelligence.com/dashboard/projects/organizations_89d295318b3fded6_commons-imaging_git-ae82b7d5/campaign_runs/last_run/overview
https://app.code-intelligence.com/dashboard/projects/organizations_89d295318b3fded6_commons-imaging_git-ae82b7d5/campaign_runs/last_run/overview

3/10 page

With Fuzzing You Can Run Automated Security Tests With Each Pull Request

If you run fuzzing in your CI/CD pipeline, you can perform automated penetration
tests with each pull request. This helps you fix bugs faster and to improve the quality
of your code. See fuzzing in action.

With Fuzzing You Can Achieve Maximum Code Coverage Without False

Positives

Because fuzzers execute the software under test, they always provide you inputs that
you can use to reproduce bug. That's why fuzzing enables you to reach up to 99%
code coverage without any false positives. Click here to see an example of a full bug
report from a fuzzing project.

CI Fuzz Coverage Reporting

Fuzzing Explained for Developers

Due to their high degree of automation, modern fuzzing
solutions, such as CI Fuzz, enable developers to conduct
advanced security tests themselves. For more detailed
information read this instruction: Fuzzing 101

https://www.code-intelligence.com/cs/c/?cta_guid=a917b715-ba7d-4e32-b026-d524eefa1dae&signature=AAH58kGuddtK7vnFybd-sf-beOsmS73UVg&pageId=33255344128&placement_guid=20f8b525-d626-4d3b-a328-1db2991ad7a0&click=9b656754-0195-4e5a-a549-620fa6aadc90&hsutk=c144b0c15868d6a310a31bde538a9198&canon=https%3A%2F%2Fwww.code-intelligence.com%2Ftechnology&portal_id=7466322&redirect_url=APefjpHvFggusD6KF-OHI0QWvtbkLzKHKyJ1ang1T2KQ28L03FHDkFKGB408V1ntd04677_H6Yr4eG6xWpwQ8a2l9uDmlWc50zn0O7L7_2IIAVpFEf4ts9iMBzCsNEWO8LKt1aTsNm4qlvmgyTDHUMFBSmBMdocYvX2jdyC1Ei9Lofbx19YXJVlcDHFGEMA5oMtwkDdJzD8DfRICS7RFu2CTx8KiIHNcnUly3n3eyvPPVzcCpL2Z1GCPE_6blZtry6fKMZkEO_r4Ptx6TFNiBnZCopj8JyEVHg&__hstc=78154443.c144b0c15868d6a310a31bde538a9198.1627912237974.1635151752505.1635156806953.114&__hssc=78154443.6.1635156806953&__hsfp=1392991395&contentType=standard-page
https://app.code-intelligence.com/dashboard/projects/organizations_89d295318b3fded6_commons-imaging_git-ae82b7d5/campaign_runs/elated_boyd/findings
https://app.code-intelligence.com/dashboard/projects/organizations_89d295318b3fded6_commons-imaging_git-ae82b7d5/campaign_runs/elated_boyd/findings
https://help.code-intelligence.com/fuzzing-101?hsCtaTracking=31279775-37da-47e8-b4bf-8004cdb92758%7C8be09c97-ca7f-4252-82ae-0657a0aecc24
https://app.code-intelligence.com/dashboard/projects/organizations_89d295318b3fded6_commons-imaging_git-ae82b7d5/campaign_runs/elated_boyd/findings

4/10 page

Industries Where Fuzzing Is Used

More and More Industry Standards Require Fuzz Testing

Due to increasing security regulations, more and more software companies must run
automated security tests before shipping their software. That is why many industry
and ISO standards recommend integrating automated fuzz testing into the
development process. Especially in industries, that already have advanced quality and
security regulations. Good examples are ISO/SAE 21434 and UNECE WP.29, which
deal with the security of automotive software.

What Standards and ISO Norms Recommend Fuzzing?

ISO 26262
Road vehicles – Functional Safety
UNECE WP.29
United Nations World Forum for
Harmonization of Vehicle Regulations
ISA/IEC 62443-4-1
Secure Product Development Lifecycle
Requirements
ISO/SAE DIS 21434
Road Vehicles — Cybersecurity
Engineering
UL2900-1 and UL2900-2-1
Healthcare and Wellness Systems -
Software Cybersecurity for Network-
Connectable Products
ISO/IEC/IEEE 29119
Software and Systems Engineering -
Software Testing

ISO/IEC/IEEE 29119
Software and Systems Engineering -
Software Testing
ISO/IEC 12207
Systems and Software Engineering –
Software Life Cycle Processes
ISO 27001
Information Technology – Security
Techniques – Information Security
Management Systems
ISO 22301
Security and Resilience — Business
Continuity Management Systems
IT-Grundschutz (Germany)
Based on ISO 27001
and others

https://www.iso.org/standard/43464.html
https://www.iso.org/standard/43464.html
https://en.wikipedia.org/wiki/World_Forum_for_Harmonization_of_Vehicle_Regulations
https://webstore.iec.ch/preview/info_iec62443-4-1%7Bed1.0%7Den.pdf
https://www.iso.org/standard/70918.html
https://standardscatalog.ul.com/ProductDetail.aspx?productId=UL2900-1
https://standardscatalog.ul.com/ProductDetail.aspx?productId=UL2900-2-1
https://www.iso.org/standard/45142.html
https://www.iso.org/standard/45142.html
https://www.iso.org/standard/63712.html
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Grundschutz/Kompendium/IT_Grundschutz_Kompendium_Edition2019.pdf;jsessionid=5528868285D64D77B3F1896EBBEB65B7.1_cid369?__blob=publicationFile&v=5
https://www.iso.org/standard/75106.html
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Grundschutz/Kompendium/IT_Grundschutz_Kompendium_Edition2019.pdf;jsessionid=5528868285D64D77B3F1896EBBEB65B7.1_cid369?__blob=publicationFile&v=5

5/10 page

How Fuzzing Prevented a Total Ethereum

Shutdown

Fuzz testing finds bugs that other testing methods cannot
detect. In November 2020 a serious DoS vulnerability was fixed
in the source code of the Ethereum network due to advanced
fuzz tests. In the wrong hands, this vulnerability (CVE-2020-
28362) could have caused the shutdown of the entire Ethereum
network. Although the memory safe Golang module has already
undergone extensive security testing, this vulnerability could
only be found through fuzz testing.

Frequently Asked Questions About Fuzzing (FAQs)

1. Why is Fuzzing (Especially) Useful for Security Testing?
There are some features that make fuzzing enormously useful for security testing.

• With Fuzzing you can reach maximum code coverage without false positives.
• Fuzzing provides developers with reliable and reproducible testing inputs that

caused the application to crash. This helps them to find and fix bugs faster.
• Fuzzing is an almost completely automated testing technique.

CI Fuzz Reporting Dashboard

https://blog.ethereum.org/2020/11/12/geth_security_release/
https://blog.ethereum.org/2020/11/12/geth_security_release/
https://blog.ethereum.org/2020/11/12/geth_security_release/

6/10 page

2. What Is Feedback-Based Fuzzing?

Modern fuzzing engines use smart algorithms to increase the amount of code. The
commonly used term for this is feedback-driven or feedback-based fuzzing. Measuring
code coverage, the fuzzer can monitor which parts of program were reached with a
given input.

3. What Is a Fuzz Target?

Fuzz targets are small programs that test predefined API functions, similar to unit tests.
However, the inputs are not provided by the developer but produced with fuzz
generators.

The fuzz generators are responsible for creating random mutations of inputs that are
sent to the software under test (SUT). The delivery mechanism processes inputs from
fuzz generator and feeds them to the SUT for execution.

Finally, the monitoring system keeps track of how inputs are executed within the SUT.
It detects triggered bugs, which plays a critical part in the fuzzing process, as it also
influences what types of vulnerabilities can be discovered during fuzzing. Click here
to learn how to set up fuzz targets yourself.

Example of a fuzz target, for Java applications. See full gist

https://blog.code-intelligence.com/fuzz-targets-jazzer?hsLang=en
https://gist.github.com/jolor1/c055aef47f417d76afff7a8dd1f31933
https://gist.github.com/jolor1/c055aef47f417d76afff7a8dd1f31933

7/10 page

4. What Are the Benefits of Fuzzing Compared to Other Testing Methods?
If you are looking for a way to secure your software, there are a variety of testing
approaches, such as Static Applications Security Testing (SAST), Dynamic Application Security
Testing (DAST), Interactive Application Security Testing (IAST), and Feedback-based
Application Security Testing (FAST). Each of these methods has its advantages and
disadvantages. We have compared some of them in the table below.

Fuzz Testing compared to other Application Security Testing approaches, such as SAST, DAST and IAST

5. What Bugs Can You Find with Fuzzing?

Since 2018, Code intelligence provides a platform for automated fuzz testing. Working
closely together with industry and academia, the engineers at Code Intelligence were
able to find thousands of bugs and extended the reach of modern fuzz testing to
a variety of different use cases. Here, you will find an overview of some of the bug
classes that the CI team found over the past years.

https://www.code-intelligence.com/
https://www.code-intelligence.com/about-us
https://www.code-intelligence.com/webinar

8/10 page

Memory Leaks – incorrect management of memory allocation leads to an exhausting
available memory.

Injections – untrusted input supplied to a program.

Sensitive Data Exposure - an application inadvertently exposes personal data.

Buffer Overflows - exceeding the buffer when writing data ends up with overwriting
adjacent memory locations.

Example of an error message in CI Fuzz

Use After Free – not pointing to a valid object result in data corruption, segmentation
faults or general protection faults.

Data Races - accessing the same memory location concurrently in multi-thread
process that is related to security vulnerabilities.

Software Crashes - failing to function properly and exiting, possibly fatal system
errors.

However, there are many more bug classes, that you can find with fuzzing.
Click here to see the full list.

https://www.code-intelligence.com/
https://www.code-intelligence.com/
https://blog.code-intelligence.com/what-bugs-can-you-find-with-fuzzing?hsLang=en

9/10 page

6. Black-Box Fuzzing vs. White-Box Fuzzing

Black-box fuzzing generates inputs for a target program without knowledge of its
internal behavior or implementation. A black-box fuzzer may generate inputs
from scratch, or rely on a static corpus of valid input files to base mutations on. Unlike
coverage-guided approaches and white-box fuzzing, the corpus does not grow here.

White-box fuzzing analyses the internal structure of the program. With each new
fuzzing run, they learn to track and maximize the code coverage. White-
box fuzzers usually use intelligent instrumentation and adaptable algorithms, which
makes them more effective and accurate in detecting vulnerabilities.

The difference between black-box-fuzzing and white-box-fuzzing

7. How to Get Started With Fuzzing?

Try to start with a simple open-source fuzzer like Atheris (for Python) or Jazzer (for
Java). These open-source tools can help you to get comfortable with this testing
approach. But if you want to try fuzzing in a more complex environment, there are a
number of easy to use enterprise solutions, such as CI Fuzz, which comes with many
additional integrations and features, like OWASP vulnerability detection, automated
bug reporting, CI/CD and dev tool integration, or API fuzzing.

https://github.com/CodeIntelligenceTesting/jazzer/
https://www.code-intelligence.com/product-tour?hsLang=en

10/10 page

8. List of Common Open Source Fuzzing Tools
Developers can benefit from a whole range of open-source fuzzing tools. There are
often specialized for specific use cases (e.g. Kernel fuzzing) or programming languages.

AFL++ - American fuzzy lop file format fuzzer
libFuzzer - in-process, coverage-guided fuzzing engine for targets written in C/C++
Jazzer - coverage-guided fuzzer for Java, Kotlin, and Clojure
Honggfuzz - general-purpose, easy-to-use fuzzer with interesting analysis options.
OSS-Fuzz - continuous fuzzing for open-source software
ClusterFuzz - scalable fuzzing infrastructure that finds security and stability issues.
Radamsa - test case generator for robustness testing
BFuzz - an input based fuzzer tool
KernelFuzzer - cross platform kernel fuzzer framework
Go-fuzz - a library for populating go objects with random values

Click here to see more task-specific open-source fuzzers.

9. Autofuzz: Fuzz Your First Application Today

Most fuzzers require users to create fuzz targets or test harnesses manually. However,
to the ease fuzzing integration, some open-source fuzzers like Jazzer (Java Fuzzer)
provide an autofuzz mode, making the creation of fuzz targets obsolete.

Example of a simple autofuzz command with Jazzer

This way fuzzing becomes as simple as writing unit tests. With Jazzer, every developer
can now to secure a Java library in less than 3 minutes, which makes this kind of open-
source fuzzing perfect to gain first experiences with fuzz testing.

Ty out Jazzer yourself, read this blog post or watch this Jazzer tutorial.

https://github.com/AFLplusplus/AFLplusplus
https://llvm.org/docs/LibFuzzer.html
https://github.com/CodeIntelligenceTesting/jazzer/
https://github.com/google/honggfuzz
https://github.com/google/oss-fuzz
https://google.github.io/clusterfuzz/
https://github.com/aoh/radamsa
https://github.com/RootUp/BFuzz
https://github.com/FSecureLABS/KernelFuzzer
https://github.com/google/gofuzz
https://github.com/secfigo/Awesome-Fuzzing#tools
https://github.com/CodeIntelligenceTesting/jazzer/
https://blog.code-intelligence.com/autofuzz
https://github.com/CodeIntelligenceTesting/jazzer/
https://fuzz.ci/jazzer/update/2.0
https://codeintelligencede-my.sharepoint.com/personal/yukhman_code-intelligence_com/Documents/Jazzer%20tutorial

