
APPLICATION SECURITY
 TESTING REPORT 2020

INTRODUCTION

Current state of Application Security 3

NEED FOR SHIFT-LEFT TESTING

Rule of Ten 4

THE STATE OF SOFTWARE DEVELOPMENT LIFECYCLES

V-Model 5
Agile 6
DevOps 6
DevSecOps 7

EXISTING APPLICATION SECURITY TESTING APPROACHES

SAST 8
DAST 9
IAST 10
FAST 11
SCA 12
RASP 12

BUYING GUIDE FOR AST TOOLS

Basics Features 13
Integrations 13
Usability 14
Reporting 15

BEST PRACTICE

AST Landscape 2020 16

CODE INTELLIGENCE

TABLE OF CONTENTS

2

The universe of software development is expanding
increasingly with new approaches. Agile and DevOps
are just two of them. Developers are working on
different approaches on a variety of projects.
The emphasis on software testing varies. Current
developments show that software testing should
be initiated as an integral part of the development
process. The reality is that software bugs are still a
massive problem.

The top 606 bugs alone caused a total financial
loss of USD 1.7 trillion through direct damage,
hidden consequential costs, and fixed costs.

It is hard to imagine that security testing is still of
secondary importance to many companies.

To shed some light on the subject, we help you to
get an overview of the current state of Application
Security (AppSeC). Application Security takes place
in different phases of the Software Development
Lifecycle (SDLC, DevSecOps). Software vendors
usually rely on more than one Application Security
Testing approach (SAST, DAST, IAST, ...), which has
obvious advantages and disadvantages, discussed
in more detail below. Since none of the approaches
guarantees complete security, we have asked
ourselves the following questions:

What are the essential requirements to ensure an
effective and reliable testing process?

What could a better Application Security Testing
solution look like?

CODE INTELLIGENCE

INTRODUCTION

3

Software bugs are far more relevant to costs than
hardware errors. In fact, software failures account
for more downtime costs than hardware failures
by a factor of 3. Yet many organizations spend little
effort and money to ensure software quality. Even
for those companies that do extended testing to
inspect their code, the effort is so complex that
bugs are still inevitable. In fact, companies that do
not spend the time and money upfront to correct
bugs end up paying for it in downtime and corrective
efforts after the application is released. In the worst
case, it can cause a loss of customers or revenue.

The Rule of Ten states that the further a bug moves
undiscovered into the late stages of a development
process - or even to the end-customer - the higher
the costs for eliminating it. The rule is well-founded
by the results of several studies from the 1970s
in Japan, the USA, and Great Britain, which dealt
with the causes of product and quality defects. All
these analyses delivered almost the same results:

70% of all product defects were caused through
failure during the stages of planning, design, or
preparation. Even though the studies focused on
manufacturing processes, the consequences can
be found in modern software development as well.

If it takes 100€ to fix a defect at unit testing,
it takes 1,000€ at system testing, 10,000€ at
Acceptance Testing, and 100,000€ after release.

Organizations often use application security
testing tools early in development to find and fix
bugs and vulnerabilities. Currently, SAST (Static
Application Security Testing) and SCA (Software
Composition Analysis) tools are widely spread
among development teams. But in recent months,
the rise of FAST (Feedback-based / Fuzzing
Application Security Testing) in particular has
ensured that more and more development teams
are finding bugs early in the development process.

RULE OF TEN

NEED FOR SHIFT-LEFT TESTING

IMAGE: Rule of Ten

4

SOFTWARE DEVELOPMENT LIFE CYCLE

THE STATE OF SOFTWARE
 DEVELOPMENT LIFECYCLES

The V-model is an SDLC model where the execution
of processes happens in a sequential manner in a
V-shape. It is an extension of the waterfall model
and also known as Verification or Validation model.
For every single phase in the software development
cycle, there is a directly associated testing phase
on the other side of the “V”. The model advocates
a highly-disciplined process and only allows the
team to start the next development stage after the
completion of the previous one.

 Unfortunately, the V-Model comes with several
downsides for modern software development:

• High risk and uncertainty for development costs
and time

• Difficult to go back and change a functionality
after proceeding to the next stage

• Poor model for long and complex projects
• Software can not be run until the end of SDLC

V-MODEL

IMAGE: V-Model

The Software Development Life Cycle (SDLC)
is a process used to design, develop and test
software with a high-quality standard. The SDLC
aims to produce applications that meet customer
expectations and reach completion within the
estimated budget. It consists of a detailed plan
describing how to develop, maintain, replace and
alter or enhance the application.

The SDLC defines a methodology for improving the
quality of software and the overall development
process. In recent years, the methodology for the
SDLC experienced a shift from the classical V-model
to DevSecOps. The following section will highlight the
advantages and disadvantages of the different SDLC
methods and provide guidance for best practice.

5

SOFTWARE DEVELOPMENT LIFE CYCLE

THE STATE OF SOFTWARE
 DEVELOPMENT LIFECYCLES

AGILE

IMAGE:DevOps

DevOps is a set of practices that combines
technical and cultural aspects to help developers
and IT operations teams to build, test, and release
software faster and more efficiently. “In the DevOps
ideal, developers receive fast, constant feedback

on their work, which enables them to quickly and
independently implement, integrate, and validate
their code, and have the code deployed into the
production environment.”, according to The DevOps
Handbook.

DEVOPS

IMAGE:Agile

Within software development, Agile Software
Development is defined as a set of methodologies
that enables development teams to deliver results
smarter and faster. Agile Software Development is
based on an iterative approach, where requirements
and solutions evolve through collaboration between
self-organizing cross-functional teams. Its goal is to
provide a high-grade management system to meet
the organization’s goals and the customer’s needs.
Kanban and Scrum are two of the most widely used
Agile methodologies.

The benefits of Agile include a fast-responding
approach to changes, faster review cycles, greater
flexibility in releasing new features, and less up-front
work for development teams. Nevertheless, Agile

does not provide real answers to the challenges
of modern application security but most solutions
in the area of DevSecOps are fitting well into Agile
Software Development.

6

SOFTWARE DEVELOPMENT LIFE CYCLE

THE STATE OF SOFTWARE
 DEVELOPMENT LIFECYCLES

DevSecOps is about introducing security earlier in
the software development life cycle (SDLC), thus
minimizing vulnerabilities and bringing security
closer to IT and business objectives. It adds a security
perspective to the idea of DevOps and involves the
integration of security testing technologies into
continuous integration/delivery (CI/CD) workflows.
The simple premise of it is that everyone in the SDLC
is responsible for the security of the application.
The main benefits of DevSecOps are the reduction
of misadministration and mistakes from the start.
Also the high degree of automation reduces the
need for security architects to manually configure
security consoles. DevSecOps should definitely be
considered a “best practice” in 2020.

Ryan O’Leary, Chief Security Research Officer at
White Hat, says the following about teams that
implemented DevSecOps:

“Our average customer takes 174 days to fix a
vulnerability found when using dynamic analysis
in production. However, our customers that have
implemented DevSecOps do it in just 92 days. If
we look at vulnerabilities found in development
using static analysis, an average company takes
113 days, while the DevSecOps companies take just
51 days. [It’s] a pretty drastic improvement, [...]. In
addition, vulnerabilities that were found and fixed
in just 10 days for an average customer were just
15 percent of the total number of vulnerabilities
ultimately fixed. For DevSecOps companies, 53
percent of vulnerabilities found were fixed in just
10 days.”

DEVSECOPS

IMAGE:DevSecOps

7

APPLICATION SECURITY TESTING

EXISTING APPLICATION SECURITY
TESTING APPROACHES

SAST, or Static Application Security Testing, has been
around for many decades. In SAST, the analyzer
scans the source code without actually executing
it. The code is then traversed for suspect patterns
using heuristics. Code fitting specific patterns,
which could indicate potential vulnerabilities, are
then presented to the user. Since SAST tools do not
execute the code, they can be used at any stage of
the software development process.

The fundamental disadvantage of SASTis that it
produces large numbers of false positives (code
that does not actually contain vulnerabilities). In
practice, large projects can easily have hundreds
of thousands of warnings and even in toy examples

can produce thousands of warnings. This leads to
tremendous usability issues and most developers
and testers strongly reject these tools. A common
coping strategy is to outsource the analysis of the
warnings, thus defeating the purpose of running the
tools in-house.

Many SAST companies now offer heuristics to reduce
the number of false positives, however, since these
heuristics are also based on static analysis they
suffer from the same advantages and disadvantages
and do not change the fundamental problem of SAST.

SAST

In today’s software testing industry acronyms like
SAST, DAST, or IAST are omnipresent, with FAST
and SCA being the most recent trend in 2020. This
section will first give you a short recap of the current

application security testing approaches and discuss
the strengths and weaknesses of the available
approaches.

SAST strengths SAST weaknesses

Offers high code coverage
Produces too many false positives so that usability is
well below recommendable levels

Can be performed at the early stages of software
 development, since it does not require the application to
be built completely

Misses security vulnerabilities and produces False
 Negatives / Positives

Requires access to the source code (“white-box testing”)

Cannot discover runtime issues

Not well suited to track issues where user input is
involved

Has difficulty with libraries and frameworks found in
modern apps

8

APPLICATION SECURITY TESTING

EXISTING APPLICATION SECURITY
TESTING APPROACHES

DAST, or Dynamic Application Security Testing,
has also been known for several decades. Here,
the analyzer searches for security vulnerabilities
and weaknesses by executing the application. The
software under test is executed using predefined or
randomized inputs. If the behavior of the application
differs from predefined correct responses or the
program crashes, there is an error or bug in the
application. The main advantage of dynamic testing
is that there are virtually no false positives since
real program behavior is analyzed, which makes the
results a lot more useful to testers.

An interesting feature of DAST is that it also can
be used on software for which the tester does not
have the source code. In this case, DAST treats the
application as a black box and only looks at in- and
outputs. This feature has led many to incorrectly
use the terms black-box testing and DAST
interchangeably. Black-box testing is a subcategory
of DAST. Another common misconception about

DAST is that it is only used during the testing phase
of development. While DAST does require that the
program be executable, beyond that DAST can be
used at any time during the software development
lifecycle (SDLC), including during early development.

However, DAST also has some disadvantages. Since
DAST executes the program with random inputs, it
cannot guarantee code coverage and it has poorer
runtime properties than SAST solutions. Black-box
DAST solutions also have the disadvantage that
there is nothing to guide the generation of random
inputs making it very inefficient and under most
conditions incapable of finding bugs buried deep
within the code. It also requires manual effort to
understand the stack traces produced by crashes
and map them onto source code to fix the problems
later. Some DAST solutions can address these
problems, however, unlike the very simple black-box
DAST solutions, they suffer from high complexity and
require significant expertise to use.

DAST

DAST strengths DAST weaknesses

Produces virtually no false positives Requires working application to be tested

Can discover runtime issues Needs special testing infrastructure and expertise

Can discover issues based on user interaction with the
software

Often executed towards the end of the software devel-
opment cycle, due to poor performance

Does not require access to the source code Does not cover all code paths

9

APPLICATION SECURITY TESTING

EXISTING APPLICATION SECURITY
TESTING APPROACHES

IAST, or Interactive Application Security Testing, is a
marketing term and is often described as combining
the benefits of SAST and DAST. Another feature
claimed by IAST is that it is integrated into the SDLC
and the CI/CD chain instead of only being used in the
testing phase. This feature gives rise to the “I” in IAST.

For instance, Gartner defines IAST as follows:

“Interactive application security testing (IAST)
uses instrumentation that combines dynamic
application security testing (DAST) and static
analysis security testing (SAST) techniques to
increase the accuracy of application security
testing. Instrumentation allows DAST-like
confirmation of exploit success and SAST-like
coverage of the application code, and in some
cases, allows security self-testing during general
application testing. IAST can be run stand-alone,
or as part of a larger AST suite, typically DAST.”

There are several distinct ways this can be
interpreted. Firstly, a DAST solution is used to test
warnings produced by SAST tools to weed out the
false positives. This would be very desirable but, to
the best of our knowledge, no tool can actually do

this at scale with any scientific rigor and thus we
consider this to be snake oil. Alternatively, it can be
interpreted as a DAST solution that utilizes the source
code to improve performance, such as fuzzers that
use instrumentation to improve code coverage.

These are highly successful tools but they all fall in
the DAST category, since DAST is not restricted to
black-box testing. The “interactivity” feature also is
not excluded from DAST, since dynamic testing can
be done as soon as the code is executable. So we
see the term IAST mainly as a marketing term, which
describes a sub-category of DAST to explicitly feature
the fact that the DAST tool is integrated into the CI/
CD pipeline. Cutting through the marketing hype, this
is still an important distinction to make, since fixing
bugs early in the SDLC is definitely a desirable goal.

However, current IAST solutions still have a major
drawback: they either rely on the definition of good
test cases triggering a high code coverage (passive)
or rely on randomization as used in dumb fuzzing and
well-defined patterns generated by the DAST engine.
This was state of the art until the rise of Feedback-
based Application Security Testing (FAST) in 2020.

IAST

1 0

APPLICATION SECURITY TESTING

EXISTING APPLICATION SECURITY
TESTING APPROACHES

Feedback-based Application Security Testing (FAST),
is also a subcategory of DAST and is currently being
developed on the basis of feedback-based (also
called coverage-guided) fuzzing techniques. Old
DAST solutions and black-box fuzzing approaches
have the fundamental drawback missing actual code
coverage information when executing a given input.
As a result, they rely on brute force, pattern-based,
and random approaches to generate inputs in the
hope of triggering crashes vulnerabilities. In other
words, they are only able to find shallow bugs due
to the limited code coverage they can achieve. But
fuzzing has developed enormously in recent years,
so it is not without reason that it is referred to as
“modern fuzzing” in 2020.

Technology leaders such as Google and Microsoft
already use modern fuzzing and technologies to
automatically test their code for vulnerabilities.

For example, with the help of oss-fuzz over 16,000
bugs have been discovered in Google Chrome and
11,000 bugs in 160 open-source projects.

In 2019, fuzzing found more bugs at Google than
any other technology.

This clearly illustrates the effectiveness of feedback-
based fuzzing to uncover bugs and vulnerabilities.

State-of-the-art fuzzing techniques instrument the
program being tested so that the fuzzer gets feedback
about the code covered when executing each input.
This feedback is then used by the mutation engine
as a measure of the input quality. At the core of the
mutation engine are genetic algorithms using code
coverage as a fitness function. Generated inputs
resulting in new code coverage survive and are used
in the next iterations of mutations. The net effect of
this process are inputs that maximize code coverage
and thus increase the probability of triggering bugs.

Despite these enormous advancements, the full
potential of FAST has barely been explored yet. Apart
from the use of genetic algorithms to optimize code
coverage, a wealth of other techniques can be used
to significantly improve the effectiveness of DAST
and current FAST fuzzers such as CI Fuzz.

FAST

FAST strengths FAST weaknesses

Produces virtually no false positives Requires a working application to be tested

Highly automated - Feedback mechanisms guide the
input generators to maximize the code coverage anth
thus find vulnerabilities with minimal human effort

Covers significantly more code than traditional SAST &
DAST, but cannot guarantee full code coverage (as any
other practical tool)

Automatically maximizes the code coverage

More effective and efficient than traditional DAST / IAST
and thuscan be integrated seamlessly into CI/CD

1 1

https://www.zdnet.com/article/google-weve-open-sourced-clusterfuzz-tool-that-found-16000-bugs-in-chrome/
https://www.zdnet.com/article/google-weve-open-sourced-clusterfuzz-tool-that-found-16000-bugs-in-chrome/
https://www.zdnet.com/article/google-weve-open-sourced-clusterfuzz-tool-that-found-16000-bugs-in-chrome/
https://twitter.com/mboehme_/status/1176324809094885376
https://twitter.com/mboehme_/status/1176324809094885376

APPLICATION SECURITY TESTING

EXISTING APPLICATION SECURITY
TESTING APPROACHES

Software Composition Analysis (SCA) is similar to
SAST, however, the main goal of SCA is to identify
all open source components and dependencies in
a codebase and to map that inventory to a list of
current known vulnerabilities. Here, there are various

possibilities to detect those components, starting
with a static analysis of the source code (including
build systems scripting) up to binary file scanning
and dynamic linking of libraries at run time.

SCA

Runtime Application Self-Protection (RASP) works
with instrumentation similar to IAST, however, in this
case, the instrumentation is added to the production

code. The goal is to detect and prevent actual attacks
during run time.

SCA strengths SCA weaknesses

Can be performed at the early stages of software devel-
opment, since it does not require the application to be
built completely

Only checks for security issues in OSS components and
dependencies not the proprietary code

Can give an overview over the open source components
in use (including licensed)

Doesn’t check for misusing APIs or usage of deprecated
functions

Can give alerts for productive code if issues are found
in existing components

RASP strengths RASP weaknesses

Can be used in almost any development process
High performance impact and computing overhead in
production code taking more resources and slower
response time

No manual effort required once integrated into the
deployment pipelines

Compromised reliability due to complexity: each false
positive detection could lead to limited functionality on
the customer’s side rather than your own developers.

DAST / IAST / FAST tools could learn from the productive
inputs and thus increase the code coverage in the CI
process (not widely adopted though)

RASP

1 2

APPLICATION SECURITY TESTING TOOLS

A BUYING GUIDE FOR AST TOOLS

AST tools have to meet some basic requirements to ensure an effective and reliable testing process:

• Easy-to-use for developers (without demanding security domain knowledge)
• Support for used programming languages and frameworks
• High degree of automation for deployment and analysis of source code
• High code coverage to ensure discovery of critical bugs deep in the source code
• Low false positives rate to prevent manual developer effort
• Integration into common CI/CD pipelines, bug tracker, cloud and container development tools

BASICS FEATURES

IMAGE: Easy Integration into CI/CD Pipelines (Tool: CI Fuzz)

In order to stay competitive and achieve faster go-to-
market, organizations are focusing on low-overhead
AST tools, which involves a rise of software-as-a-
service (SaaS) solutions. AST tools must seamlessly
integrate with existing development and DevOps

tools, which means that the tools must fit with the
tools that developers are already using or will use in
the future (e.g CI/CD pipelines, IDEs, container, etc.).
If AST tools slow down the development lifecycle,
teams will not use them.

INTEGRATIONS

1 3

APPLICATION SECURITY TESTING TOOLS

A BUYING GUIDE FOR AST TOOLS

IMAGE: Developers View of a Finding incl. Vulnerability Description, Risk Evaluation and Education Links (Tool: CI Fuzz)

USABILITY

Developers need AST tools that help them do
their job without getting in their way or creating
extra manual effort because otherwise, they will
get frustrated and not use AST tools efficiently. To
ensure a pleasant experience for the developers, it
is crucial that no false positives are caused. FAST
tools are particularly suitable for this, as they do

not generate any false positives. In order to enable
developers without security knowledge to detect
vulnerabilities, it is important that the entire process
runs as automated as possible. Furthermore, a good
AST tool educates the developer to learn from his
mistakes and thus avoid repetitive bugs.

1 4

APPLICATION SECURITY TESTING TOOLS

A BUYING GUIDE FOR AST TOOLS

IMAGE: Customized Reporting Dashboard (Tool: CI Fuzz)

AST tools have to provide extensive and
comprehensive reports for both managers and
developers. These should not only include technical
details like the reached code coverage or the
severity of the found bugs but also executive-level
dashboards which can help CISO’s or product leads

to make strategic decisions about upcoming security
activities. For example, they must provide trend data
and compliance information in relation to industry
standards (e.g. OWASP Top 10, CWE Top 25). But most
importantly the reporting must be customizable for
the organizations’ needs.

REPORTING

1 5

BEST PRACTICE

APPLICATION SECURITY TESTING
LANDSCAPE 2020

The best practice Application Security Testing
Landscape in 2020 is largely defined by modern
fuzzing (FAST) technologies. FAST produces virtually
no false positives, is highly automated, requires
minimal manual effort, and can find bugs that stay
uncovered by traditional DAST / IAST. More importantly
from the development process perspective, it can
be integrated seamlessly into CI/CD workflows with
testing platforms like CI Fuzz. FAST is oriented on
classic testing, can be performed on unit, system
and acceptance testing levels, allows regression
testing and is able to learn from existing test cases.
This way, developers feel more familiar...

As with any other testing methodology, not all
aspects of application security can be covered by
FAST. Especially during the coding stage it makes
sense to apply a combination of SAST and SCA. The

advantage mainly lies in the ad-hoc feedback to the
developer. During the development stage, often, the
code is not entirely compilable/runnable, so the
ability to do partial evaluation is very valuable. Finally,
it still makes sense to perform a manual pentest
before the actual release in order to complete the
security testing process.

Another important point is the implementation
of DevSecOps. DevSecOps enables developers to
self-service infrastructure. Developers can easily
configure networks and codify the infrastructure
(infrastructure-as-code). This makes the process
more reviewable and reproducible as well as faster
than waiting for an infrastructure/admin team to set
up stuff according to the developers requirements.

IMAGE:Best Practice AST Landscape 2020

BEST PRACTICE AST LANDSCAPE 2020
to deliver End-to-End Security for Applications at all Stages

1 6

Code Intelligence GmbH
Rheinwerkallee 6

D-53227 Bonn

E-Mail
info@code-intelligence.de

Phone
+49 228 / 28695830

Website
www.code-intelligence.com

	Titelseite
	Seite 2
	Seite 6

